Abstract

ABSTRACTGraphene, a two-dimensional carbon allotrope, has raised great interests as a material candidate for future electronics due to its superb carrier transport and unique physics. The demand for future-generation large-scale carbon-based electronics motivates assembly of large-area graphene and selection of ideal substrate material that best preserves the transport property of graphene. In this work, CVD-assembled large-area graphene on thin multilayer hexagonal boron nitride (h-BN) is employed to demonstrate the basic building block of digital circuit - inverter prototype made of two graphene-channel field-effect transistors (GFETs). The doping in the CVD-grown graphene, probed via electrical measurements, is implemented through non-uniform local surface chemistry. The full transfer response of the graphene logic inverter is demonstrated in the localized P/N doping region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.