Abstract
Similarity search is important in information-retrieval applications where objects are usually represented as vectors of high dimensionality. This paper proposes a new dimensionality-reduction technique and an indexing mechanism for high-dimensional datasets. The proposed technique reduces the dimensions for which coordinates are less than a critical value with respect to each data vector. This flexible datawise dimensionality reduction contributes to improving indexing mechanisms for high-dimensional datasets that are in skewed distributions in all coordinates. To apply the proposed technique to information retrieval, a CVA file (compact VA file), which is a revised version of the VA file is developed. By using a CVA file, the size of index files is reduced further, while the tightness of the index bounds is held maximally. The effectiveness is confirmed by synthetic and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.