Abstract

AbstractCuyaite (IMA2019-126), Ca2Mn3+As3+14O24Cl, is a new arsenite mineral from near Cuya in the Camarones Valley, Arica Province, Chile. It is associated with anhydrite, native arsenic, arsenolite, calcite, claudetite, ferrinatrite, gajardoite-3R, leiteite, magnesiocopiapite, phosphosiderite, pyrite, realgar and talmessite and formed from the oxidation of As-bearing primary phases and alteration by saline fluids derived from evaporating meteoric water under hyperarid conditions. Cuyaite occurs as pale brown thin needles (elongated on [010]), typically in divergent sprays and subparallel intergrowths. The streak is white. Crystals are transparent with adamantine lustre; subparallel intergrowths exhibit silky lustre. The mineral has Mohs hardness of 2½, is brittle, exhibits no cleavage and has irregular fracture. The calculated density is 4.140 g cm–3. Cuyaite is optically biaxial (–), with α = 1.87(1), β = 1.956(calc) and γ = 1.98(1), determined in white light; 2Vmeas= 60(1)°; and orientation:X=bandY^a= 53° in obtuse β. Electron microprobe analyses provided the empirical formula Ca2.03Mn3+0.95(As3+13.66Sb3+0.65)Σ14.31O24Cl0.88. The six strongest powder X-ray diffraction lines are [dobsÅ(I)(hkl)]: 4.73(45)(111,$\bar{1}$12), 3.162(100)($\bar{3}$14), 3.035(28)(213), 3.004(37)(204), 2.931(90)($\bar{2}$15, 312) and 2.779(28)(020). Cuyaite is monoclinic,Pn,a= 14.7231(6),b= 5.58709(19),c= 17.4185(12) Å, β = 112.451(8)°,V= 1324.23(14) Å3andZ= 2. In the crystal structure of cuyaite (R1= 0.0369 for 2095I> 2σIreflections), AsO3pyramids share O corners to form a ‘loose’ 3D framework; Jahn–Teller distorted Mn3+O6octahedra and CaO8polyhedra link by edges and corners to form columns; the columns also link by edge- and corner-sharing to the AsO3pyramids in the framework; Cl occupies channels along [010] in the framework. The Raman spectrum is consistent with the presence of multiple As3+O3groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.