Abstract

Ammonia-borane (AB) is an excellent material for chemical storage of hydrogen. However, the practical utilization of AB for production of hydrogen is hindered by the need of expensive noble metal-based catalysts. Here, we report Cux Co1-x O nanoparticles (NPs) facilely deposited on graphene oxide (GO) as a low-cost and high-performance catalyst for the hydrolysis of AB. This hybrid catalyst exhibits an initial total turnover frequency (TOF) value of 70.0 (H2 ) mol/(Cat-metal) mol⋅min, which is the highest TOF ever reported for noble metal-free catalysts, and a good stability keeping 94 % activity after 5 cycles. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) investigations suggested that the high catalytic performance could be attributed to the interfacial interaction between Cux Co1-x O NPs and GO. Moreover, the catalytic hydrolysis mechanism was studied by in situ XAS experiments for the first time, which reveal a significant water adsorption on the catalyst and clearly confirm the interaction between AB and the catalyst during hydrolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.