Abstract

Energy efficient routing protocol selection for Cluster based Underwater Wireless Sensor Network (CUWSN) is aimed to support monitoring and controlling underwater scenarios in the field of Internet of Underwater Things. The crucial requirement of Underwater Wireless Sensor Network (UWSN) is to prolong network lifespan. The aim of this article is to build energy-efficient UWSN that will trim energy expenditure as well as improve performance in the underwater scenario. In the proposed CUWSN, a UWSN architecture is designed, which uses the benefits of cluster head and multi-hop transmission. The proposed CUWSN extends the network lifetime by using multi-hop transmission. The proposed CUWSN model is simulated using QualNet 7.1 simulation tool. In this article, energy consumption, throughput, packet delivery ratio, transmission delay, error signals, and packet loss parameter indicators are considered to investigate the performance of proposed CUWSN. The outcomes of proposed CUWSN exhibit that the AODV routing protocol surpasses the DYMO routing protocol by 80%, the IERP routing protocol by 75%, STAR routing protocol by 47% and ZRP routing protocol by 81% in perspective of energy efficiency. In references to other performance indicators like average path loss and average interference the IERP routing protocol and in case of throughput the ZRP routing protocol performs well among the five routing protocols. Finally, the AODV routing protocol is energy conservative in the proposed CUWSN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.