Abstract

Increasing photosynthetic daily light integral (DLI) by supplementing with high-pressure sodium (HPS) lamps during propagation has been shown to enhance photosynthesis and biomass accumulation of cuttings. The development of high-intensity light-emitting diodes (LEDs) is a promising technology with potential as a greenhouse supplemental lighting source. Our objective was to quantify the impact of narrow spectra supplemental lighting from LEDs on growth, morphology, and gas exchange of cuttings compared with traditional HPS supplemental lighting. Cuttings of Impatiens hawkeri W. Bull ‘Celebrette Frost’, Pelargonium ×hortorum L.H. Bailey ‘Designer Bright Red’, and Petunia ×hybrida Vilm. ‘Suncatcher Midnight Blue’ were received from a commercial propagator and propagated in a glass-glazed greenhouse at 23 °C air and substrate temperature set points. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings were placed under 70 μmol·m−2·s−1 delivered from HPS lamps or LED arrays with varying proportions (%) of red:blue light (100:0, 85:15, or 70:30). After 14 days under supplemental lighting treatments, growth, morphology, and gas exchange of rooted cuttings were measured. There were no significant differences among Impatiens and Pelargonium cuttings grown under different supplemental light sources. However, compared with cuttings propagated under HPS lamps, stem length of Petunia cuttings grown under 100:0 red:blue LEDs was 11% shorter, whereas leaf dry mass, root dry mass, root mass ratios, and root:shoot ratio of cuttings grown under 70:30 red:blue LEDs were 15%, 36%, 17%, and 24% higher, respectively. Supplemental light source had minimal impact on plants after transplant. Our data suggest that LEDs are suitable replacements for HPS lamps as supplemental light sources during cutting propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call