Abstract

Forage–food dual-purpose ratoon rice cropping (FFRR) is used to balance forage demands with ratoon rice grain yields, that is whole plant (stem and sheath, panicles) cuttings in the main season are used as forage, and rice in the regeneration season is used as food. In this study, the local ratoon rice production system as the control, we were carried out the field experiment of cultivation practices (cutting time and cutting height), and investigated the system productivity, economic benefits, carbon footprints and energy use efficiency. The energy use efficiency, energy productivity and energy profitability increased with cutting time delay, and cutting height decreased. Significant differences of these index were observed among the treatments for cutting time and cutting height (p < 0.05). Carbon efficiency and carbon sustainability index was increase with cutting time delay, and there was significant difference among the treatment of cutting time in 2018 (p < 0.05), the minimum carbon footprint of FFRR was 78.6 kgCO2 t−1 averagely at the cutting time of 30 days after the flowering stage. In 2018, the maximum net income of FFRR was 30,577 CNY hm−2 at a cutting time of 30 days after the flowering stage while the stubble height was 10 cm, and dependent on the forage yield of the main crop; in 2019, the maximum net income of FFRR was 27,326 CNY hm−2 at a cutting time of 10 days after the flowering stage while the stubble height was 10 cm, and dependent on the grain yield of the ratoon crop. Therefore, the optimal cultivation practice of the FFRR (cutting at 30 days after the flowering stage and with a stubble height of 10 cm) showed higher carbon and energy use efficiency, economic benefits of the FFRR were fluctuated with the price of forage of the main crop and rice grain of the ratoon crop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call