Abstract

We consider a general worst-case robust convex optimization problem, with arbitrary dependence on the uncertain parameters, which are assumed to lie in some given set of possible values. We describe a general method for solving such a problem, which alternates between optimization and worst-case analysis. With exact worst-case analysis, the method is shown to converge to a robust optimal point. With approximate worst-case analysis, which is the best we can do in many practical cases, the method seems to work very well in practice, subject to the errors in our worst-case analysis. We give variations on the basic method that can give enhanced convergence, reduce data storage, or improve other algorithm properties. Numerical simulations suggest that the method finds a quite robust solution within a few tens of steps; using warm-start techniques in the optimization steps reduces the overall effort to a modest multiple of solving a nominal problem, ignoring the parameter variation. The method is illustrated with several application examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.