Abstract

Abstract The paper discusses micro dimple millings with inclined ball end mills. Cutting process models are presented to control the dimple shapes and predict the cutting forces. In micro dimple milling, the cutter rotation axis is inclined to have the non-cutting time, during which the cutting edges don’t remove the material in a rotation of cutter. The end mill is fed at a high rate so that the machining areas removed by the cutting edges are not overlapped each other. The shapes and the alignment of the dimples are simulated for the cutting parameters in the mechanistic model. Then, the cutting forces are predicted for high machining accuracies. The cutting experiments were conducted to verify the micro dimple machining. The dimple shape model is validated in comparison between the simulated and the actual dimple shapes. The cutting forces are simulated to compare the measured ones. The force model works well to predict the cutting forces with the chip flow direction during a rotation of the cutter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call