Abstract

Fast and accurate cutting force prediction is still one of the most complex problems and challenges in the machining research community. In this study, a modified finite element model is presented to predict cutting force and cutting length in turning operations of AISI 1018. Unlike the existing research, in which the mean friction coefficient μ was taken, a variable friction coefficient μ involving the sliding velocity between chip and tool is presented in this article. The sticking–sliding friction model is adopted, and the maximum limiting stress in sticking region is calculated by considering the thermal softening and normal stress distribution. Experiments have been performed for machining AISI 1018 using tungsten carbide tool, and simulation results have been compared to experiments. The simulation results of the modified finite element model have shown better outputs in predicting cutting force, tangential force, and tool–chip contact length on the rake face. The results of this article not only are meaningful to optimize tool design and cutting parameters but also can provide a clear understanding of contact behavior between tool rake face and chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.