Abstract

The influences of the machine parameters on machined parts are not always precisely known and hence, it becomes difficult to recommend the optimum machinability data for machine process. This paper proposes a method for cutting parameters identification using Multi adaptive Network based Fuzzy Inference System (MANFIS). Three Adaptive Network based Fuzzy Inference System (ANFIS) models were used in the first step to identify the initial values for the cutting parameters (cutting speed, feed rate, and depth of cut) using surface roughness as a single input, in the next step these parameters were modified and verified using another set of ANFIS models. Then, workpiece surface temperature is used as input for another set of ANFIS models to amend the final values of the cutting parameters. In this way, multi-input-multi-output ANFIS structure presented, which can identify the cutting parameters accurately once the desired surface roughness and in-process measured surface temperature were entered to the system. The test results showed that the proposed MANFIS model can be used successfully for machinability data selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.