Abstract
Wood boring is a feature of several insect species and is a major cause of severe and irreparable damage to trees. Adult females typically deposit their eggs on the stem surface under bark scales. The emerging hatchlings live within wood during their larval phase, avoiding possible predation, whilst continually boring and tunneling through wood until pupation. A study of wood boring by insects offers unique insights into the bioengineering principles that drive evolutionary adaptations. We show that larval mandibles of the coffee wood stem borer beetle (Xylotrechus quadripes: Cerambycidae) have a highly sharp cusp edge to initiate fractures in Arabica wood and a suitable shape to generate small wood chips that are suitable for digestion. Cuticle hardness at the tip is significantly enhanced through zinc-enrichment. A hollow architecture significantly reduces bending stresses at the mandibular base without compromising the structural integrity. Finite element model of the mandible showed highest stresses in the tip region; these decreased to significantly lower values at the start of the hollow section. A scaling model based on a fracture mechanics framework shows the importance of the mandible shape in generating optimal chip sizes. These findings contain general principles in tool design and put in focus interactions of insects and their woody hosts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.