Abstract

Many studies have been conducted to develop algorithms for cutting force prediction in a variety of machining process. However, few studies have developed the cutting force prediction algorithm by considering the effect of tool edge radius in ultra-precision diamond turning, including fast tool servo/slow tool servo assisted diamond turning. This paper presents a cutting force prediction algorithm for the ultra-precision diamond turning, which is able to take into account the effect of tool edge radius. The developed algorithm is general for predicting cutting force in most cylindrical diamond turning processes such as fast tool servo/slow tool servo assisted diamond turning. Experiments are conducted to validate the cutting force prediction algorithm. The experimental results verify the assumed relationship between the chip formation and the minimum chip thickness, where the work material is entirely removed when the uncut chip thickness is larger than a certain value. The estimated value of minimum chip thickness is obtained. The measured cutting force shows good agreement with the simulated value. In addition, the friction induced vibration due to elastic recovery occurs when a worn diamond cutting tool is adopted in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.