Abstract

Cutting forces should be kept in minimum to reduce tool deflection, vibration and tool wear. Mathematical model has been developed to predict the cutting forces in terms of process parameters such as helix angle of cutting tool, spindle speed, feed rate, axial and radial depth of cut. Response surface methodology was employed to create a mathematical model and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminium Al 6063 by high speed steel end mill cutter and the cutting forces were measured using milling tool dynamometer. The direct and interaction effect of the process parameter with cutting forces were analysed, which helped to select process parameter in order to keep cutting forces minimum, which ensures the stability of end milling process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call