Abstract

This article focuses on cutting force modelling in the orthogonal turning of two commonly used types of fibre-reinforced plastic materials. Uncoated cutting tool inserts made of sintered carbide and with different rake angles were used for the designed experiments. In addition to the different rake angles in the experiments, there were also different feeds per revolution and cutting speeds. It was found that the effect of the feed per revolution and the rake angle on the cutting force is statistically significant for both materials. On the other hand, the effect of the cutting speed on the cutting force is statistically insignificant. Therefore, a mathematical model of the cutting force with the impact of the feed per revolution as well as the rake angle was developed and based on the experimental data all constants needed for the proposed mathematical model were found. Based on the comparison of the calculated and experimental cutting forces it was found that there was no statistically significant difference between them, and the proposed model can be therefore considered sufficiently accurate in the given range of the cutting conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.