Abstract

This paper presents an analytical, ductile cutting force model of a novel micromachining tool that is based on micro-orbital motion of a single-point tool tip. The single-point tool tip used in this study is a single crystal diamond stylus that consists of a cone section of 50° and a spherical tip with radius less than 1 μm. The tool is actuated by a piezo tube that generates a high frequency micro-orbital motion of a single-point tool tip in a circular trajectory. Unlike conventional micromilling, where the cutting occurs at the edges of the tool flutes, a single-point tool may utilize any point on the circumference surface of the tool tip. Also, due to its extreme negative rake angle at small depths of cut, the technique can machine brittle materials such as silicon in the ductile regime. Experiments were performed on an aluminum alloy (AL2024) to obtain the specific cutting force and the coefficient of friction in order to calculate the cutting forces in all 3 axes and to verify the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.