Abstract

The gas turbine, aerospace and nuclear industries are dependent upon nickel-based superalloys to enable these industries to continue to innovate. Without these materials the industries would fail to achieve new heights of efficiency as the strength and operating temperature requirements continue to climb. Nickel-based superalloys thrive in these elevated temperature applications, where their great resistance to creep and corrosion is coupled with remarkably high strength values. These same characteristics that are invaluable to the final operating environment severely degrade their machinability with high cutting forces and aggressive rate of tool wear.Although the field of machining research is very well established, when it comes to nickel-based superalloys there is a large amount of that is yet to be understood. Trochoidal milling has been identified to extend tool life and reduce machining time in the milling of aluminums, however in nickel-based superalloys it remains largely unexplored. This work aims to understand the cutting force behavior of milling nickel-based superalloys using this alternative milling technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.