Abstract
BackgroundThis study aimed at assessing the effect of different kinematics as well as different instrument designs on efficiency of cutting of two heat-treated nickel–titanium systems. Forty resin canals with 30°-angle of curvature and a length of 16 mm were utilized in this research. They were divided into four groups depending on the instrument and the operating kinematic, group I; Azure rotary system in rotation motion, group II; Azure rotary system in Reciprocation motion, group III; Fanta AF One rotary system in rotation motion and group IV; Fanta AF One rotary system in reciprocation motion. Blocks were labeled and then weighed pre- and post-preparation with delta weight (Δ wt = wt pre − wt post) and data were documented for statistics evaluation.ResultsResin canals prepared using Fanta AF One rotary system showed significantly higher weight loss than Azure rotary system in both rotation and reciprocation (P < 0.001). Insignificant difference was reported for rotation and reciprocation movements in both file systems.ConclusionThe instrument’s cross section revealed a more significant impact on cutting efficiency than the motion used.
Highlights
This study aimed at assessing the effect of different kinematics as well as different instrument designs on efficiency of cutting of two heat-treated nickel–titanium systems
Many techniques are advocated for Biomechanical preparation these days, but the use of rotary nickel–titanium instruments is the most popular (Almanei 2018)
Samples instrumented with Fanta AF One rotary system showed significantly higher weight loss than Azure rotary system in both rotation and reciprocation (P < 0.001)
Summary
This study aimed at assessing the effect of different kinematics as well as different instrument designs on efficiency of cutting of two heat-treated nickel–titanium systems. Forty resin canals with 30°-angle of curvature and a length of 16 mm were utilized in this research They were divided into four groups depending on the instrument and the operating kinematic, group I; Azure rotary system in rotation motion, group II; Azure rotary system in Reciprocation motion, group III; Fanta AF One rotary system in rotation motion and group IV; Fanta AF One rotary system in reciprocation motion. Several nickel–titanium systems are available, which are constantly being enhanced in various aspects; designs, materials, and modes of rotary. These innovations reduce the time needed, complexity in use, fatigue of clinicians, and increase success rates of these instruments (Saber et al 2015). Reciprocation, has been suggested attempting to minimize the possibility of instruments separation, as has been announced that it relieves stresses on instruments, enhance resistance to cyclic fatigue and NiTi instruments’ lifetime (Bürklein et al 2012; Plotino et al 2012)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.