Abstract

Defects in programmed cell death or apoptosis are major hallmarks of cancer contributing to tumorigenesis, tumor progression, and therapy resistance. In the past decade, many of the pathways leading to apoptosis, as well as the molecular mechanisms blocking the death of tumor cells, have been elucidated. This detailed knowledge of the core apoptosis machinery is now being exploited for translation into novel cancer therapies in order to restore apoptosis induction in tumor cells. Strategies include activation of proapoptotic mediators such as death receptors, tumor protein p53, and second mitochondria-derived activator of caspases (SMAC)/DIABLO as well as inhibition of endogenous apoptosis inhibitors such as IAPs (inhibitor of apoptosis proteins) and BCL-2 (B-cell chronic lymphoid leukemia/lymphoma) proteins. Several approaches employing gene therapy and antisense strategies, recombinant biologics, or classic organic and combinatorial chemistry, have advanced into clinical trials or are already approved. This review looks at recent developments in apoptosis-based cancer therapies and highlights some very promising advances in drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.