Abstract
The hormonal form of vitamin D(3), 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is an immune system modulator and induces expression of the TLR coreceptor CD14. 1,25(OH)(2)D(3) signals through the vitamin D receptor, a ligand-stimulated transcription factor that recognizes specific DNA sequences called vitamin D response elements. In this study, we show that 1,25(OH)(2)D(3) is a direct regulator of antimicrobial innate immune responses. The promoters of the human cathelicidin antimicrobial peptide (camp) and defensin beta2 (defB2) genes contain consensus vitamin D response elements that mediate 1,25(OH)(2)D(3)-dependent gene expression. 1,25(OH)(2)D(3) induces antimicrobial peptide gene expression in isolated human keratinocytes, monocytes and neutrophils, and human cell lines, and 1,25(OH)(2)D(3) along with LPS synergistically induce camp expression in neutrophils. Moreover, 1,25(OH)(2)D(3) induces corresponding increases in antimicrobial proteins and secretion of antimicrobial activity against pathogens including Pseudomonas aeruginosa. 1,25(OH)(2)D(3) thus directly regulates antimicrobial peptide gene expression, revealing the potential of its analogues in treatment of opportunistic infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.