Abstract
This paper aims to investigate the effect of water absorption on the cutting behavior of biocomposites using flax fiber reinforced polylactic-acid (PLA) and the orthogonal cutting process. Different immersion times have been considered from 1 to 150 days in order to investigate both transient and saturated hygrometric regimes. Machining forces are measured during the cutting process and the machined surfaces are analyzed using a scanning electron microscope and an optical interferometer. The in-situ removed chip morphologies are captured by a high-speed camera. Results show a functional relationship between the multiscale hygro-mechanical properties of flax fiber composites and their shear mechanisms that are controlled by the water content. The water uptake modifies the cellulosic structure of natural flax fibers in the transient regime and damages the fiber/matrix interfaces in the saturated regime, which affects considerably the cutting mechanisms and the machinability of the biocomposite structure at different scale levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.