Abstract

Contact surfaces do not make contact perfectly because such surfaces have a lot of asperities. The real contact area is much smaller than the nominal contact area, and the real contact areas has a non-uniform distribution because of the waviness in the contact surface. The contact stiffness is influenced not only by the deformation of the asperities, but also by the distribution of the real contact areas. In general, a contact surface with a uniform distribution of the real contact areas has greater contact stiffness. However, this requires a grinding finish and costs more than the cutting finish. In this study, a method for uniformly distributing the real contact areas easily, is proposed to improve the contact stiffness of a contact surface finished by cutting. The method is called the cutter mark cross (CMC) method. The allowable waviness in the CMC method is shown. In addition, the effect of the CMC method is investigated by experimentation. The results show that the real contact areas can be distributed uniformly using the CMC method. The horizontal and vertical contact stiffness can also be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call