Abstract

We give bounds in total variation distance for random walks associated to pure central states on free orthogonal quantum groups. As a consequence, we prove that the analogue of the uniform plane Kac walk on this quantum group has a cut-off at $$N\ln (N)/2(1-\cos (\theta ))$$ . This is the first result of this type for genuine compact quantum groups. We also obtain similar results for mixtures of rotations and quantum permutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.