Abstract

We consider the zero-range process with arbitrary bounded monotone rates on the complete graph, in the regime where the number of sites diverges while the density of particles per site converges. We determine the asymptotics of the mixing time from any initial configuration, and establish the cutoff phenomenon. The intuitive picture is that the system separates into a slowly evolving solid phase and a quickly relaxing liquid phase: as time passes, the solid phase dissolves into the liquid phase, and the mixing time is essentially the time at which the system becomes completely liquid. Our proof uses the path coupling technique of Bubley and Dyer, and the analysis of a suitable hydrodynamic limit. To the best of our knowledge, even the order of magnitude of the mixing time was unknown, except in the special case of constant rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.