Abstract

Embryos of the viviparous cockroach Diploptera punctata accumulate large amounts of hydrocarbon (HC) of either maternal or embryonic origin. HC synthesis and its accumulation in maternal and embryonic tissues were measured over the course of gestation. Female abdominal integument was the only tissue that synthesized appreciable amounts of HC in vitro, and did so at an increasing rate from the time of mating to mid-pregnancy, when rates of synthesis declined. The embryos synthesized HC at rates <1% those of the female, showing that the majority of HC detected in and on embryos was of maternal origin. The brood sac that houses the developing embryos did not synthesize HC in vitro, indicating that HC must be transported from the female abdominal integument to the embryos. The mass of female epicuticular HC was constant at ∼183 μg, while her internal HC increased fourfold from mating to mid-pregnancy, then declined until parturition. The decline in internal HC reflected both declining HC synthesis in the female and greater export to the embryos, as embryonic internal HC increased 250-fold prior to parturition. An external HC coating over the oothecal covering and chorion of the embryos increased to mid-pregnancy, then declined. Unlike oviparous cockroaches, D. punctata females fed throughout the reproductive cycle, reflecting the nutritional demands of continuously provisioning the developing embryos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.