Abstract

Investigations on “natural” cuticular cracks were conducted on nectarine fruit [Prunus persica (L.) Batsch var. nucipersica (Suckow) C.K. Schneid.]. A method for quantifying the cuticular crack surface area on a whole fruit basis was proposed. By using a stratified sampling design, the spatial distribution of the cuticular cracks over three regions (stylar end, peduncle, and cheek), their morphology, and the estimation of the total proportion of cuticular cracks on the fruit were studied. These features were examined during fruit development and in response to several fruit growing conditions corresponding to various crop loads and irrigation regimes. Cuticular cracks on nectarine fruit occurred during the final rapid fruit growth stage. Larger fruit presented higher cuticular crack densities in the apical regions than in the cheek regions. Thin and larger cuticular cracks occurred continuously during fruit development. Cuticular cracks represented 10% to 12.5% of the fruit surface area for well irrigated or low crop load trees, whereas they covered less than 4.5% for the heavy crop load and water deficit treatments. Cheek regions largely contributed to the total cuticular crack surface area (>60%), regardless of the fruit growing conditions. After irrigation was restricted, cuticular crack development was limited. A positive relationship was established between the cuticular crack surface area per fruit surface area and the fruit fresh weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call