Abstract

The cuticular layer of the insect exoskeleton contains diverse compounds that serve important biological functions, including the maintenance of homeostasis by protecting against water loss, protection from injury, pathogens and insecticides, and communication. Bactrocera tryoni (Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published accounts of this species’ cuticular chemistry. We here provide a comprehensive description of B. tryoni cuticular chemistry. We used gas chromatography-mass spectrometry to identify and characterize compounds in hexane extracts of B. tryoni adults reared from larvae in naturally infested fruits. The compounds found included spiroacetals, aliphatic amides, saturated/unsaturated and methyl branched C12 to C20 chain esters and C29 to C33 normal and methyl-branched alkanes. The spiroacetals and esters were found to be specific to mature females, while the amides were found in both sexes. Normal and methyl-branched alkanes were qualitatively the same in all age and sex groups but some of the alkanes differed in amounts (as estimated from internal standard-normalized peak areas) between mature males and females, as well as between mature and immature flies. This study provides essential foundations for studies investigating the functions of cuticular chemistry in this economically important species.

Highlights

  • The cuticular layer of the insect exoskeleton contains a range of mostly aliphatic compounds, including normal and branched alkanes, alkenes, saturated and unsaturated esters, alcohols, saturated and unsaturated fatty acids, ketones, and aldehydes [1]

  • The present study finds that the n-hexane-extracted cuticular chemistry of B. tryoni includes a complex mixture of at least 66 compounds, including two spiroacetals, four aliphatic amides, 26 saturated/unsaturated C12 to C20 methyl, ethyl and propyl esters and 34 methyl branched saturated alkanes with a range of C29 to C33 carbon backbones

  • We suspect that occurrence of the siloxanes in the previous work may reflect impurities, and incorrect assignments may have been given for the shorter methyl branched alkanes

Read more

Summary

Introduction

The cuticular layer of the insect exoskeleton contains a range of mostly aliphatic compounds, including normal and branched alkanes, alkenes, saturated and unsaturated esters, alcohols, saturated and unsaturated fatty acids, ketones, and aldehydes [1]. Cuticular hydrocarbons usually contain 20 to 50 carbons, and compounds with other functional groups vary from 12 to 54 carbons [2,3,4]. A primary function of cuticular hydrocarbons is to protect against desiccation [5,6], injury, and infection [7,8,9,10,11,12]. Some cuticular hydrocarbons serve as sex pheromones in house fly [20], the circumboreal fly [21], moths [22], bees [23] and the cowpea weevil [24]. Cuticular hydrocarbons serve as aggregation pheromones in some insects, including

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.