Abstract

BackgroundMalaria in South Africa is primarily transmitted by Anopheles funestus Giles. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control. Pyrethroid resistance in southern African An. funestus is primarily conferred by monooxygenase enzyme metabolism. However, selection for this resistance mechanism is likely to have occurred in conjunction with other factors that improve production of the resistance phenotype. A strong candidate is cuticle thickening. This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification.ResultsMeasures of mean cuticle thickness in laboratory samples of female An. funestus were obtained using scanning electron microscopy (SEM). These females were drawn from a laboratory colony carrying the pyrethroid resistance phenotype at a stable rate, but not fixed. Prior to cuticle thickness measurements, these samples were characterised as either more or less tolerant to permethrin exposure in one experiment, and either permethrin resistant or susceptible in another experiment. There was a significant and positive correlation between mean cuticle thickness and time to knock down during exposure to permethrin. Mean cuticle thickness was significantly greater in those samples characterised either as more tolerant or resistant to permethrin exposure compared to those characterised as either less tolerant or permethrin susceptible. Further, insecticide susceptible female An. funestus have thicker cuticles than their male counterparts.ConclusionPyrethroid tolerant or resistant An. funestus females are likely to have thicker cuticles than less tolerant or susceptible females, and females generally have thicker cuticles than males. In pyrethroid resistant An. funestus, this increase in cuticle thickness is likely to have developed as an auxiliary to the primary mode of pyrethroid resistance which is based on enzyme-mediated detoxification.

Highlights

  • Malaria in South Africa is primarily transmitted by Anopheles funestus Giles

  • Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control [1,2,3]

  • Adequate responses including the re-introduction of DDT and a change in the prescribed anti-malarial drug regimen succeeded in controlling the epidemic [3,4]

Read more

Summary

Introduction

This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control [1,2,3] The effect of this range expansion, as well as the emergence of anti-malarial drug resistance, was an unprecedented malaria epidemic, primarily in Kwazulu/ Natal, South Africa, during the period 1996 to 2000. Slower insecticide penetration across the cuticle (though not necessarily the result of cuticle thickening) has been associated with insecticide resistance in the cotton bollworm Helicoverpa armigera [9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call