Abstract

The cuticle of human hair has been examined, via a range of analytical methods, in order to reveal previously unknown information about its structure and to deepen understanding of its contribution to fibre properties. Cross-sections of hair fibre have been examined with X-ray microdiffraction oriented perpendicular to the surface of the cross-sections. AFM investigations were carried out for further investigating and deciphering the structure of the cuticle. Moisture sorption analytics of cuticle separated from fibre and mechanical tests of decuticled fibres against virgin fibres were used for understanding the role of the cuticle in the economy of hair fibre. Previously unknown swelling behaviour of the hair cuticle during moisture sorption has been revealed, as has an increased significance of the cuticle's role in moisture management at higher values of relative humidity. Through AFM investigation, the reaction of hair cuticles with chlorine water has further strengthened the idea that the Allwörden membrane does not exist, and is actually an artefact of the delamination of the A-layer and exocuticle from the underlying endocuticle. Using decuticled fibres for stress-strain tests, and by comparing the results with those of virgin fibres, the effect of the cuticle on the post-yield area of the hair fibre stress-strain diagram has also been demonstrated. Finally, X-ray microdiffraction and AFM investigations suggest that the cuticle possesses a small-scale ordered structure, based on possibly not fully crystalline and irregularly arranged α-helices oriented almost perpendicular to the growth axis of the fibre and enhancing the general description of cuticle as the protective layer of the fibre. The role of the cuticle for the hair fibre is more complex than previously thought. The cuticle is demonstrated not only to possess a hidden rod-matrix structure, that supports its protective nature, but also to play specific roles in the fibre's response to moisture, and in fibre mechanical behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call