Abstract

We have previously described two cytotoxic T lymphocyte clones isolated from lymphocytes infiltrating a human major histocompatibility complex class II-/class I+, CD4+ cutaneous T cell lymphoma. These clones displayed a CD4+CD8dim+ (TC5) and CD4+ CD8- (TC7) phenotype and mediated a specific major histocompatibility complex class I-restricted cytotoxic activity toward Cou-LB autologous tumor cell line. Our studies were performed to elucidate the mechanism involved in T-cell-clone-mediated cytotoxicity and to determine the cytokine profile of both the lymphoma cell line and specific cytotoxic T lymphocyte clones. The results indicate that, despite surface expression of Fas receptor on Cou-LB and Fas ligand induction on TC5 and TC7 cell membranes, the CD4+ cytotoxic T lymphocyte clones do not use this cytotoxic mechanism to lyse their specific target. The TC7 clone uses instead a granzyme-perforin-dependent pathway. Furthermore, quantitative analysis of Th1 and Th2 cytokine mRNA expression in the cutaneous T cell lymphoma cell line as well as in TC5 and TC7 clones indicated that, whereas the tumor cells display a Th2-type profile (interleukin-4, interleukin-6, and interleukin-10), the cytotoxic T lymphocyte clones express Th1-type cytokines (interferon-gamma, granulocyte macrophage colony stimulating factor, and interleukin-2). In addition, preincubation of the tumor-infiltrating lymphocyte clones with autologous tumor cells induced their activation and subsequent amplification of the Th1-type response. These results indicate a direct contribution of the malignant cells in the Th1/Th2 imbalance observed frequently in cutaneous T cell lymphoma patients and suggest their potential role in depressed cell-mediated immunity. Identification of CD4+ Th1-type cytotoxic T lymphocyte clones, the tumor antigen they recognize, and optimization of their cytokine expression profile should be useful for the design of new immunotherapy protocols in cutaneous T cell lymphoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.