Abstract

The cut-set bound developed by Cover and El Gamal in 1979 has since remained the best known upper bound on the capacity of the Gaussian relay channel. We develop a new upper bound on the capacity of the Gaussian primitive relay channel which is tighter than the cut-set bound. Our proof is based on typicality arguments and concentration of Gaussian measure. Combined with a simple tensorization argument proposed by Courtade and Ozgur in 2015, our result also implies that the current capacity approximations for Gaussian relay networks, which have linear gap to the cut-set bound in the number of nodes, are order-optimal and leads to a lower bound on the pre-constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.