Abstract

Entailment relations, introduced by Scott in the early 1970s, provide an abstract generalisation of Gentzen’s multi-conclusion logical inference. Originally applied to the study of multi-valued logics, this notion has then found plenty of applications, ranging from computer science to abstract algebra. In particular, an entailment relation can be regarded as a constructive presentation of a distributive lattice and in this guise it has proven to be a useful tool for the constructive reformulation of several classical theorems in commutative algebra. In this paper, motivated by these concrete applications, we state and prove a cut-elimination result for inductively generated entailment relations. We analyse some of its consequences and describe the existing connections with analogous results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.