Abstract

The conventional cumulative sum (CUSUM) with k = 0.5 is often used as the default CUSUM statistic when future shifts are unknown. In this paper, CUSUM procedures are designed to be efficient at signalling a range of future expected but unknown location shifts. Two approaches are advocated. The first uses three simultaneous conventional CUSUM statistics with different resetting boundaries. This results in a procedure that has, on average, several levels of memory, and thus signals a broader range of location shifts more efficiently than the conventional CUSUM with k = 0.5. The second uses an adaptive CUSUM statistic that continually adjusts its form to be efficient for signalling a one-step-ahead forecast in deviation from its target value. Average run length (ARL) is used to compare the relative performance of procedures. Several applications are used to illustrate procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.