Abstract

A series of (Gd, Y, Yb, Tb, Ce)3Al2Ga3O12 compositionally disordered compounds with a garnet structure were prepared in the form of ceramics by sintering in oxygen at 1650 °C for 2 h and studied for the luminescent properties and interaction of ions entering the matrix host. The luminescence features of Ce3+ ions were found to be strongly dependent on the Yb concentration. Photoluminescence and scintillation kinetics are characterized by subnanosecond kinetics when the Yb index in the compound exceeds X = 0.3. It opens an opportunity to create an extremely fast and dense scintillation material emitting in a visible range. A further decrease in the Yb index in the compound leads to an increase in the intensity of Yb3+ infrared (IR) emission, whereas Ce3+ and Tb3+ ions contribute to the luminosity of the material by overlapping intra- and intereconfiguration luminescence bands in the spectral range of 300–700 nm. This finding opens an opportunity to create converter materials tolerant to the corpuscular radiation of isotope sources, providing a high efficiency of electric current production when coupled with a silicon photovoltaic element. The compounds were engineered at the nanoscale level, providing control over electronic excitation transfer between luminescent ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call