Abstract

The degradation of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds was customized for dentoalveolar augmentation applications, where 5-6 months period is optimal. The scaffolds were treated with either 3M sodium hydroxide (NaOH) or 0.1% lipase solution for a total of 108 h. A greater degree of degradation and reduction in the physical properties of the scaffolds was observed in the lipase treated when compared with NaOH-treated scaffolds. After 108 h, increases in weight loss and average porosity of the scaffolds in the lipase-treated group measured 90.6% and 22.9%, respectively, when compared with 52.8% and 11.8% in the NaOH-treated group. The mechanical testing results revealed a similar trend, with a complete loss of compressive strength and modulus measured as early as 60 h in the lipase-treated group. The honeycomblike architecture was well preserved throughout the experiment only for the NaOH-treated scaffolds in addition to a favorable surface roughness ideal for bone-regeneration applications. In conclusion, pretreatment with NaOH demonstrates a simple approach for tailoring the physical properties and degradation rate of PCL-TCP scaffolds for the potential use as biomaterials targeted for dentoalveolar bone-regeneration procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.