Abstract
Anaerobic forward osmosis membrane bioreactor (AnOMBR) is a potential wastewater treatment technology, due to its low energy consumption and high effluent quality. However, membrane fouling is still a considerable problem which causes dwindling of water flux and shortening the membrane lifetime. In this study, electro-assisted anaerobic forward osmosis membrane bioreactor (AnOMEBR) was developed to treat wastewater and mitigate membrane fouling, in which the conductive FO membrane was used both as the separation unit and cathode. The formation, development and alleviation of membrane fouling in AnOMEBR were investigated. The results showed that the soluble microbial products (SMP) content and the proteins/polysaccharides (PN/PS) value in AnOMEBR were 26% and 15% lower than that in AnOMBR, respectively. The absolute value of Zeta of sludge mixture in AnOMEBR was 1.2 times that of the AnOMBR. The increase in the interaction between the membrane surface and the negatively charged foulants could inhibit the adsorption of foulants on membrane surface in the initial stage of membrane fouling. The strong interaction among foulants further affected the composition, structure and thickness of the cake layer on the FO membrane surface. AnOMEBR with a shorter hydraulic retention time, a higher organic loading rate and a lower osmotic pressure difference, could still obtain a lower flux decline rate of 0.063 LMH/h, which was 35.7% lower than AnOMBR. The wastewater treatment capacity of AnOMEBR was nearly 1.5 times that of the AnOMBR. This work provides an efficient strategy for mitigating membrane fouling and improving wastewater treatment capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.