Abstract

Diagnosing liver disease presents a significant medical challenge in impoverished countries, with over 30 billion individuals succumbing to it each year. Existing models for detecting liver abnormalities suffer from lower accuracy and higher constraint metrics. As a result, there is a pressing need for improved, efficient, and effective liver disease detection methods. To address the limitations of current models, this method introduces a deep liver segmentation and classification system based on a Customized Mask-Region Convolutional Neural Network (cm-RCNN). The process begins with preprocessing the input liver image, which includes Adaptive Histogram Equalization (AHE). AHE helps dehaze the input image, remove color distortion, and apply linear transformations to obtain the preprocessed image. Next, a precise region of interest is segmented from the preprocessed image using a novel deep strategy called cm-RCNN. To enhance segmentation accuracy, the architecture incorporates the ReLU activation function and the modified sigmoid activation function. Subsequently, a variety of features are extracted from the segmented image, including ResNet features, shape features (area, perimeter, approximation, and convex hull), and enhanced median binary pattern. These extracted features are then used to train a hybrid classification model, which incorporates classifiers like SqueezeNet and DeepMaxout models. The final classification outcome is determined by averaging the scores obtained from both classifiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call