Abstract

In recent years, technology has enabled Universities and Colleges to offer web-based courses, in which, teachers (or experts) design, curate and upload all course material required to teach the course online so that students can learn at their own pace, time and location. This research proposes a tutoring framework called Example Recommendation System (ERS) that is based on example-based learning (EBL) instructional method. ERS focuses on students devoting their time and cognitive capacity to studying worked-out examples so that they can enhance their learning and apply it to graded tasks assigned to them. ERS uses regular expression analysis to extract basic learning units (LU) (e.g. scanf is a LU in C programming) from all task solutions and worked-out examples and represents this knowledge in vector space. Then, these vectors are mined to generate a customized list of worked-out examples for each assigned task. The prime contribution of ERS’s extraction module is its extendibility to new domains without requiring highly trained experts. Besides extendibility, ERS extracts LUs with 81% correctness for the domain of “Programming in C” and 95% for domain of “Programming in Miranda”. ERS’s data mining model used for customization has 93% accuracy and 88% f score. ERS’s educational impact is also evident from experiments that show that students score an average of 89% in tasks for which they use ERS’s recommended worked-out examples, as opposed to an average of 73% for those tasks that students attempt without ERS’s assistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.