Abstract

ABSTRACT This research achieved its purposes of producing a 3D hand parametric hand model in a functional position, using the 3D hand parametric model as a template to generate an individualized approximate 3D hand model, constructing a 3D printed short thumb orthosis with a seamless structural design and ductile materials based on the individualized approximate 3D hand model, and reporting a case study on the usability. In experiment one, 3D hand parametric models were generated using anthropometric data collected with a scanning device from 120 Taiwanese adults. Experiment two examined the feasibility of constructing 3D-printed orthoses from the 3D hand parametric models through a case report on one client. The 19 values of the parameters measured from the client were imported into the 3D hand parametric models. An individual 3D hand mesh model approximating the client’s hand was synthesized. The orthosis was precisely sketched and then printed. In usability testing, scores on the Quebec User Evaluation of Satisfaction with Assistive Technology were mostly high. The orthosis provided greater flexibility of hand movement and stronger support than the traditional, manually-formed orthosis. The results indicated the feasibility of using a hand parametric model to optimize the reverse engineering of a short thumb orthosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.