Abstract

Autologous bone is the most commonly used flap in cranioplasty to repair the defect; however, synthetic materials are available. Poly methyl methacrylate (PMMA) is an effective polymer owing to its thermoplastic and radiolucent properties comparable to bone strength. Three-dimensional (3D) printing combined with computer-assisted design (CAD) is a simple, low-cost method to print molds that ensure surgical success. A total of 114 patients underwent cranioplasty (July 2015-April 2018), and 25 of them using 3D printed template molds due to unavailability of autologous bone. The clinical features, patient demographics, and surgical parameters were analyzed. The visual analog score for cosmesis (VASC) and Odom's score was obtained pre and post-op. The mean age of the patients is 38.4 ± 14.6 years (Range, 9-66). The primary pathology for undergoing craniectomy is stroke (n = 13; 52%), traumatic brain injury (10; 40%) and tumor (2; 8%). The reason for nonavailability of flap was infection (n = 14;56%), flap resorption (4;16%), and trauma or tumor (7;28%). The mean time for manufacturing the 3D printed template is 13.2 ± 2.1 h. On follow-up, median Odom's score is excellent in 52% of cases, good in 40%, and fair in 8%. The mean VASC score on follow up is 8.2 ± 1.3. Three patients developed minor postoperative complications. This is the first study from a single tertiary care center in India to systematically evaluate the outcomes in 3D cranioplasty using CAD and 3D printing technology. This method would be optimal especially in developing countries since PMMA is cost effective and also gives an ideal cosmetic effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call