Abstract
Customer Lifetime Value (CLV) is an important metric in relationship marketing approaches. There have always been traditional techniques like Recency, Frequency and Monetary Value (RFM), Past Customer Value (PCV) and Share-of-Wallet (SOW) for segregation of customers into good or bad, but these are not adequate, as they only segment customers based on their past contribution. CLV on the other hand calculates the future value of a customer over his or her entire lifetime, which means it takes into account the prospect of a bad customer being good in future and hence profitable for a company or organization. In this paper, we review the various models and different techniques used in the measurement of CLV. Towards the end we make a comparison of various machine learning techniques like Classification and Regression Trees (CART), Support Vector Machines (SVM), SVM using SMO, Additive Regression, K-Star Method and Multilayer Perception (MLP) for the calculation of CLV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.