Abstract
bstract: Rapid technology growth has affected corporate practices. With more items and services to select from, client churning has become a big challenge and threat to all firms. We offer a machine learning-based churn prediction model for a B2B subscription-based service provider. Our research aims to improve churn prediction. We employed machine learning to iteratively create and evaluate the resulting model using accuracy, precision, recall, and F1- score. The data comes from a financial administration subscription service. Since the given dataset is mostly non-churners, we analyzed SMOTE, SMOTEENN, and Random under Sampler to balance it. Our study shows that machine learning can anticipate client attrition. Ensemble learners perform better than single base learners, and a balanced training dataset should increase classifier performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.