Abstract

Customer churn is a problem for most companies because it affects the revenues of the company when a customer switch from a service provider company to another in the telecom sector. For solving this problem we put two main approaches: the first one is identifying the main factors that affect customers churn, the second one is detecting the customers that have a high probability to churn through analyzing social media. For the first approach we build a dataset through practical questionnaires and analyzing them by using machine learning algorithms like Deep Learning, Logistic Regression, and Naive Bayes algorithms. The second approach is customer churn prediction model through analyzing their opinions through their user-generated content (UGC) like comments, posts, messages, and products or services' reviews. For analyzing the UGC we used Sentiment analysis for finding the text polarity (negative/positive). The results show that the used algorithms had the same accuracy but differ in arrangement of attributes according to their weights in the decision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.