Abstract
In the competitive web browser market, identifying potential churners is critical to decreasing the loss of existing customers. Churn prediction based on customer behaviors plays a vital role in customer retention strategies. However, traditional churn prediction algorithms such as Tree-based models cannot exploit the temporal characteristics of browser customers behaviors, while sequence models cannot explicitly extract the information between multiple behaviors. To meet this challenge, we propose a novel model named Multivariate Behavior Sequence Transformer (MBST) with two complementary attention mechanisms to explore the temporal and behavioral information separately. Furthermore, a Tree-based classifier is attached for churn prediction instead of using the multilayer perceptron. Extensive experiments on a real-world Tencent QQ browser dataset with over 600,000 samples demonstrate that the proposed MBST achieves the F-score of 82.72% and the Area Under Curve (AUC) of 93.75%, which significantly outperforms state-of-the-art methods in terms of churn prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.