Abstract

Demand response (DR) is a demand reduction or shift of electricity use by customers to make electricity systems flexible and reliable, which is beneficial under increasing shares of intermittent renewable energy. For residential loads, thermostatically controlled loads (TCLs) are considered as major DR resources. In a price-based DR program, an aggregation agent, such as a retailer, formulates price signals to stimulate the customers to change electricity usage patterns. The conventional DR management methods fully rely on mathematical models to describe the customer’s price responsiveness. However, it is difficult to fully master the customers’ detailed demand elasticities, cost functions, and utility functions in practice. Hence, in this paper, we proposed a data-driven non-intrusive load monitoring (NILM) approach to study the customers’ power consumption behaviors and usage characteristics. Based on NILM, the DR potential of the TCLs can be properly estimated, which assists the retailer in formulating a proper pricing strategy. To realize privacy protection, a privacy-preserving NILM algorithm is proposed. The proposed methodologies are verified in case studies. It is concluded that the proposed NILM algorithm not only reaches a better prediction performance than state-of-art works but also can protect privacy by slightly sacrificing accuracy. The DR pricing strategy with NILM integrated brings more profit and lower risks to the retailer, whose results are close to the fully model-based method with strong assumptions. Furthermore, a NILM algorithm with higher performance can help the retailer earn more benefits and help the grids better realize DR requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call