Abstract

Application-specific instruction set processor (ASIP) design is a promising technique to meet the performance and cost goals of high-performance systems. ASIPs are especially valuable for embedded computing applications (e.g., digital cameras, color printers, cellular phones, etc.) where a small increase in performance and decrease in cost can have a large impact on a product's viability. Sutherland, Sproull, and Molnar originally proposed a processor organization called the counterflow pipeline (CFP) as a general-purpose architecture. We observed that the CFP is appropriate for ASIP design due to its simple and regular structure, local control and communication, and high degree of modularity. We describe a new CFP architecture, called the wide counterflow pipeline (WCFP), that extends the original proposal to be better suited for custom embedded instruction-level parallel processors. This presents a novel and practical application of the CFP to automatic and quick turnaround design of ASIPs. We introduce the WCFP architecture and describe several microarchitecture capabilities needed to get good performance from custom WCFPs. We demonstrate that custom WCFPs have performance that is up to four times better than that of ASIPs based on the CFP. Using an analytic cost model, we show that custom WCFPs do not unduly increase the cost of the original counterflow pipeline architecture, yet they retain the simplicity of the CFP. We also compare custom WCFPs to custom VLIW architectures and demonstrate that the WCFP is performance competitive with traditional VLIWs without requiring complicated global interconnection of functional devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.