Abstract

This technique presents a workflow that designs the custom surgical guide to cover a trephine bur using simple slicer software and three-dimensional (3D) printing to perform the semilunar technique. This method in autogenous bone grafting surgery harvests a thin layer of cortical bone in the donor site with a trephine bur. Its biologically favorable, round shape can be used as a shell to reconstruct the ridge with a 3D contour acceptable for future implant placement. A 78-year-old female patient required vertical and horizontal bone grafting for future implant placement due to the infection caused by the vertically fractured root of a premolar. The patient's cone beam computed tomography (CBCT) file was translated into a standard tessellation language (STL) file, and recipient and donor site models were created. Simulated surgery was done using the software first to detect any possible complications during surgery. The trephine bur planned for use in surgery was measured in necessary dimensions, and the values were added to create a guide for surgery in slicer software. Then, it was 3D-printed with a stereolithography (SLA) printer. After testing the fit of the guide, it was further tested on a fused filament fabrication (FFF) printed donor site model to check if the desired shape and size of the plate were acquired after harvest. Then, the plates were used for model surgery on the recipient site model. After no issues from the previous steps, the final patient surgery was approved and completed with success. This technique utilizes the SLA printing method to create the custom surgical guide for a trephine bur without using commercially available products. Moreover, it could be tested on FFF 3D-printed anatomical models to ensure its validity. With this innovative technique, clinicians can efficiently perform a semilunar technique, facilitating the surgery and improving patient care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.