Abstract

Ma (Int J Math 20(6):727–750, 2009) established a bijection between Fourier–Mukai partners of a K3 surface and cusps of the Kähler moduli space. The Kähler moduli space can be described as a quotient of Bridgeland’s stability manifold. We study the relation between stability conditions σ near to a cusp and the associated Fourier–Mukai partner Y in the following ways. (1) We compare the heart of σ to the heart of coherent sheaves on Y. (2) We construct Y as moduli space of σ-stable objects. An appendix is devoted to the group of auto-equivalences of \({\mathcal{D}^b(X)}\) which respect the component \({Stab^{\dagger}(X)}\) of the stability manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.