Abstract

Three-dimensional spacer fabrics which have a sandwich structure are formed in a single knitting process without any additional joining treatment. They consist of two separate multifilament outer layers connected by arrays of spacer monofilaments. This paper presents an experimental study on the relationships between the cushioning properties and structural parameters of weft-knitted spacer fabrics in order to lay a foundation for the development of seamless shaped impact protectors for human body impact protection. Sixteen spacer fabrics of different structural parameters were knitted on a computerized flat knitting machine and tested on a universal mechanical testing machine. The cushioning properties of the spacer fabrics were analyzed in terms of their structural features, compression stress–strain curves, energy absorption, and compression resilience. It was found that multifilament fineness, spacer yarn diameter, and spacer yarn pattern should be matching in order to form effective binding structures between the outer layers and spacer monofilaments. The results also showed that spacer fabrics knitted with a shorter spacer yarn span distance, coarser monofilaments, and higher spacer yarn density have better compression resistance and absorption energy but inferior compression resilience if their binding structures are effective. This study has practical significance in promoting the application of this type of fabric as a cushion material for human body protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call