Abstract

We present CUSHAW2-GPU to accelerate the CUSHAW2 algorithm using compute unified device architecture (CUDA)-enabled GPUs. Two critical GPU computing techniques, namely intertask hybrid CPU-GPU parallelism and tile-based Smith-Waterman map backtracking using CUDA, are investigated to facilitate fast alignments. By aligning both simulated and real reads to the human genome, our aligner yields comparable or better performance compared to BWA-SW, Bowtie2, and GEM. Furthermore, CUSHAW2-GPU with a Tesla K20c GPU achieves significant speedups over the multithreaded CUSHAW2, BWA-SW, Bowtie2, and GEM on the 12 cores of a high-end CPU for both single-end and paired-end alignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call